Cortical region interactions and the functional role of apical dendrites.
نویسنده
چکیده
The basal and distal apical dendrites of pyramidal cells occupy distinct cortical layers and are targeted by axons originating in different cortical regions. Hence, apical and basal dendrites receive information from distinct sources. Physiological evidence suggests that this anatomically observed segregation of input sources may have functional significance. This possibility has been explored in various connectionist models that employ neurons with functionally distinct apical and basal compartments. A neuron in which separate sets of inputs can be integrated independently has the potential to operate in a variety of ways not possible for the conventional neuron model, in which all inputs are treated equally. This article thus considers how functionally distinct apical and basal dendrites can contribute to the information-processing capacities of single neurons and, in particular, how information from different cortical regions could have disparate effects on neural activity and learning.
منابع مشابه
Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملAction of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملFunctional classes of cortical projection neurons develop dendritic distinctions by class-specific sculpting of an early common pattern.
We demonstrate in rat neocortex that the distinct laminar arrangements of the apical dendrites of two classes of layer 5 projection neurons, callosal and corticotectal, do not arise de novo, but are generated later in development from a common tall pyramidal morphology. Neurons of each class initially elaborate an apical dendrite in layer 1. Layer 5 callosal neurons later lose the segments of t...
متن کاملAlterations in Apical Dendrite Bundling in the Somatosensory Cortex of 5-HT3A Receptor Knockout Mice
In various species and areas of the cerebral cortex, apical dendrites of pyramidal neurons form clusters which extend through several layers of the cortex also known as dendritic bundles. Previously, it has been shown that 5-HT(3A) receptor knockout mice show hypercomplex apical dendrites of cortical layer 2/3 pyramidal neurons, together with a reduction in reelin levels, a glycoprotein involve...
متن کاملRho GTPase-dependent plasticity of dendritic spines in the adult brain
Brain activity is associated with structural changes in the neural connections. However, in vivo imaging of the outer cortical layers has shown that dendritic spines, on which most excitatory synapses insist, are predominantly stable in adulthood. Changes in dendritic spines are governed by small GTPases of the Rho family through modulation of the actin cytoskeleton. Yet, while there are abunda...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Behavioral and cognitive neuroscience reviews
دوره 1 3 شماره
صفحات -
تاریخ انتشار 2002